2017

  1. Efficient modification of λ-DNA substrates for single-molecule studies.
    Kim Y, de la Torre A, Leal AA, Finkelstein IJ.
    Sci Rep, 7 : 2071 (2017) [Supplement] | DOI: 10.1038/s41598-017-01984-x

  2. An aging-independent replicative lifespan in a symmetrically dividing eukaryote.
    Spivey EC*, Jones SK*, Rybarski JR, Saifuddin FA, Finkelstein IJ .
    eLife, 6 : e20340 (2017) | DOI: 10.7554/eLife.20340

    Highlights:

  3. Next-Generation DNA Curtains for Single-Molecule Studies of Homologous Recombination.
    Soniat MM, Myler LR, Schaub JS, Kim Y, Gallardo IF, Finkelstein IJ.
    Methods in Enzymology, 592 : 259-281 (2017) | DOI: 10.1016/bs.mie.2017.03.011

  4. Single-molecule imaging reveals how Mre11-Rad50-Nbs1 initiates DNA break repair .
    Myler LR*, Gallardo IF*, Soniat MM, Deshpande RA, Gonzalez XB, Kim Y, Paull TT, Finkelstein IF .
    Mol Cell, 67 : 891–898 (2017) | DOI: 10.1016/j.molcel.2017.08.002

    Highlights:

  5. Massively Parallel Biophysical Analysis of CRISPR-Cas Complexes on Next Generation Sequencing Chips.
    Jung C*,Hawkins JA*, Jones SK*, Xiao Y, Rybarski JR, Dillard KE, Hussmann J, Saifuddin FA, Savran CA, Ellington AD, Ke A, Press WH, Finkelstein IJ.
    Cell, 170 : 35-47 (2017) [Supplement] | DOI: 10.1016/j.cell.2017.05.044

    Highlights:


  6. 2016

  7. Dynamic DNA binding licenses a repair factor to bypass roadblocks in search of DNA lesions.
    Brown MW, Kim Y, Williams GM, Huck JD, Surtees JA, Finkelstein IJ.
    Nature Communications, 7 : 10607 (2016) [Supplement] | DOI: 10.1038/ncomms10607

  8. Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins.
    Myler LR*,Gallardo IF*, Zhou Y, Gong , Yang SH, Wold MS, Miller KM, Paull TT, Finkelstein IJ.
    PNAS, 113 : E1170-9 (2016) [Supplement] | DOI: 10.1073/pnas.1516674113

    Highlights:

  9. Conserved Sequence Preferences Contribute to Substrate Recognition by the Proteasome.
    Yu H, Singh Gautam AK, Wilmington SR, Wylie D, Martinez-Fonts K, Kago G, Warburton M, Chavali S, Inobe T, Finkelstein IJ, Babu MM, Matouschek A.
    J Biol Chem, 291 : 14526-39 (2016) [Supplement] | DOI: 10.1074/jbc.M116.727578

  10. Eukaryotic resectosomes: A single-molecule perspective.
    Myler LM, Finkelstein IJ.
    Progress in Biophysics and Molecular Biology, ASAP : ASAP (2016) | DOI: 10.1016/j.pbiomolbio.2016.08.001

  11. Inserting Extrahelical Structures into Long DNA Substrates for Single-Molecule Studies of DNA Mismatch Repair.
    Brown MW, de la Torre A, Finkelstein IJ.
    Methods in Enzymology, 582 : 221–238 (2016) | DOI: 10.1016/bs.mie.2016.08.006


  12. 2015

  13. High-Throughput Universal DNA Curtain Arrays for Single-Molecule Fluorescence Imaging.
    Gallardo IF, Pasupathy P, Brown M, Manhart CM, Neikirk DP, Alani E, Finkelstein IJ.
    Langmuir, 31 : 10310-7 (2015) [Supplement] | DOI: 10.1021/acs.langmuir.5b02416


  14. 2014

  15. From cradle to grave: high-throughput studies of aging in model organisms.
    Spivey EC, Finkelstein IJ.
    Mol Biosyst, 10 : 1658-1667 (2014) | DOI: 10.1039/C3MB70604D

  16. Nucleosome Acidic Patch Promotes RNF168- and RING1B/BMI1-Dependent H2AX and H2A Ubiquitination and DNA Damage Signaling.
    Leung JW, Agarwal P, Canny MD, Gong F, Robison AD, Finkelstein IJ, Durocher D, Miller KM.
    PLoS Genet, 10 : e1004178 (2014) | DOI: 10.1371/journal.pgen.1004178

  17. Single-molecule imaging of FtsK translocation reveals mechanistic features of protein-protein collisions on DNA.
    Lee JY, Finkelstein IJ, Arciszewska LK, Sherratt DJ, Greene EC.
    Mol. Cell, 54 : 832-843 (2014) [Supplement] | DOI: 10.1016/j.molcel.2014.03.033

  18. Rapid Prototyping of Multichannel Microfluidic Devices for Single-Molecule DNA Curtain Imaging.
    Robison AD, Finkelstein IJ.
    Analytical Chemistry, 86 : 4157−4163 (2014) [Supplement] | DOI: 10.1021/ac500267v

  19. High-throughput single-molecule studies of protein–DNA interactions.
    Robison AD, Finkelstein IJ.
    FEBS Lett, 588 : 3539–3546 (2014) | DOI: 10.1016/j.febslet.2014.05.021

  20. A 3D-Printed Microfluidic Microdissector for High-Throughput Studies of Cellular Aging.
    Spivey EC, Xhemalce B, Shear JB, Finkelstein IJ.
    Analytical Chemistry, 86 : 7406-12 (2014) [Supplement] | DOI: 10.1021/ac500893a


  21. 2013

  22. The promoter-search mechanism of Escherichia coli RNA polymerase is dominated by three-dimensional diffusion.
    Wang F, Redding S, Finkelstein IJ, Gorman J, Reichman DR, Greene EC.
    Nat Struct Mol Biol, 20 : 174-81 (2013) [Supplement] | DOI: 10.1038/nsmb.2472

    Highlights:

  23. Molecular Traffic Jams on DNA.
    Finkelstein IJ, Greene EC.
    Annu Rev Biophys, 42 : 10.1–10.23 (2013) | DOI: 10.1146/annurev-biophys-083012-130304


  24. 2012

  25. Single-molecule imaging of DNA curtains reveals mechanisms of KOPS sequence targeting by the DNA translocase FtsK.
    Lee JY*, Finkelstein IJ*, Crozat E, Sherratt DJ, Greene EC. (*=equal contribution).
    Proc Natl Acad Sci, 109 : 6531-6 (2012) [Supplement] | DOI: 10.1073/pnas.1201613109

  26. Single-stranded DNA curtains for real-time single-molecule visualization of protein-nucleic Acid interactions.
    Gibb B, Silverstein TD, Finkelstein IJ, Greene EC.
    Anal Chem, 84 : 7607-12 (2012) | DOI: 10.1021/ac302117z


  27. 2011

  28. Supported lipid bilayers and DNA curtains for high-throughput single-molecule studies.
    Finkelstein IJ, Greene EC.
    Methods Mol Biol, 745 : 447-61 (2011) | DOI: 10.1007/978-1-61779-129-1_26


  29. 2010

  30. Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase.
    Finkelstein IJ, Visnapuu ML, Greene EC.
    Nature, 468 : 983-7 (2010) [Supplement] | DOI: 10.1038/nature09561


  31. 2009

  32. XPD helicase speeds through a molecular traffic jam.
    Finkelstein IJ, Greene EC.
    Mol Cell, 11 : 549-50 (2009) | DOI: 10.1016/j.molcel.2009.08.012


  33. 2008

  34. Single molecule studies of homologous recombination.
    Finkelstein IJ, Greene EC.
    Mol Biosyst, 4 : 1094-104 (2008) | DOI: 10.1039/B811681B


  35. 2007

  36. Neuroglobin dynamics observed with ultrafast 2D-IR vibrational echo spectroscopy.
    Ishikawa H, Finkelstein IJ, Kim S, Kwak K, Chung JK, Wakasugi K, Massari AM, Fayer MD.
    Proc Natl Acad Sci, 104 : 16116-21 (2007) | DOI: 10.1073/pnas.0707718104

  37. Frequency-frequency correlation functions and apodization in two-dimensional infrared vibrational echo spectroscopy: a new approach.
    Kwak K, Park S, Finkelstein IJ, Fayer MD.
    J Chem Phys, 127 : 124503 (2007) | DOI: 10.1063/1.2772269

  38. Viscosity-dependent protein dynamics.
    Finkelstein IJ, Massari AM, Fayer MD.
    Biophys J, 92 : 3652-62 (2007) | DOI: 10.1529/biophysj.106.093708

  39. Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy.
    Finkelstein IJ, Zheng J, Ishikawa H, Kim S, Kwak K, Fayer MD.
    Phys Chem Chem Phys, 9 : 1533-49 (2007) | DOI: 10.1039/b618158a

  40. Substrate binding and protein conformational dynamics measured by 2D-IR vibrational echo spectroscopy.
    Finkelstein IJ, Ishikawa H, Kim S, Massari AM, Fayer MD.
    Proc Natl Acad Sci, 104 : 2637-42 (2007) | DOI: 10.1073/pnas.0610027104


  41. 2006

  42. Cytochrome c552 mutants: structure and dynamics at the active site probed by multidimensional NMR and vibration echo spectroscopy.
    Massari AM, McClain BL, Finkelstein IJ, Lee AP, Reynolds HL, Bren KL, Fayer MD.
    J Phys Chem B, 110 : 18803-10 (2006) | DOI: 10.1021/jp054959q

  43. Dynamics of proteins encapsulated in silica sol-gel glasses studied with IR vibrational echo spectroscopy.
    Massari AM, Finkelstein IJ, Fayer MD.
    J Am Chem Soc, 128 : 3990-7 (2006) | DOI: 10.1021/ja058745y


  44. 2005

  45. Ultrafast dynamics of myoglobin without the distal histidine: stimulated vibrational echo experiments and molecular dynamics simulations.
    Finkelstein IJ, Goj A, McClain BL, Massari AM, Merchant KA, Loring RF, Fayer MD.
    J Phys Chem B, 109 : 16959-66 (2005) | DOI: 10.1021/jp0517201

  46. The influence of aqueous versus glassy solvents on protein dynamics: vibrational echo experiments and molecular dynamics simulations.
    Massari AM, Finkelstein IJ, McClain BL, Goj A, Wen X, Bren KL, Loring RF, Fayer MD.
    J Am Chem Soc, 127 : 14279-89 (2005) | DOI: 10.1021/ja053627w


  47. 2004

  48. Vibrational echo experiments on red blood cells: Comparison of the dynamics of cytoplasmic and aqueous hemoglobin.
    McClain BL, Finkelstein IJ, Fayer MD.
    Chem Phys Lett, 392 : 324-329 (2004)

  49. Dynamics of hemoglobin in human erythrocytes and in solution: influence of viscosity studied by ultrafast vibrational echo experiments.
    McClain BL, Finkelstein IJ, Fayer MD.
    J Am Chem Soc, 126 : 15702-10 (2004) | DOI: 10.1021/ja0454790

  50. Fifth-order contributions to ultrafast spectrally resolved vibrational echoes: heme-CO proteins.
    Finkelstein IJ, McClain BL, Fayer MD.
    J Chem Phys, 121 : 877-85 (2004) | DOI: 10.1063/1.1758940


  51. 2003

  52. Myoglobin-CO substate structures and dynamics: multidimensional vibrational echoes and molecular dynamics simulations.
    Merchant KA, Noid WG, Akiyama R, Finkelstein IJ, Goun A, McClain BL, Loring RF, Fayer MD.
    J Am Chem Soc, 125 : 13804-18 (2003) | DOI: 10.1021/ja035654x

    Highlights: